Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.497
Filtrar
2.
Science ; 383(6678): eadn4168, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175901

RESUMO

Africa bears a disproportionate burden of infectious diseases, accounting for a substantial percentage of global cases. Malaria, HIV/AIDS, tuberculosis, cholera, Ebola, Lassa fever, and other tropical diseases, such as dengue and chikungunya, have had a profound impact on morbidity and mortality. Various factors contribute to the higher prevalence and incidence of infectious diseases in Africa, including socioeconomic challenges, limited access to health care, inadequate sanitation and hygiene infrastructure, climate-related factors, and endemicity of certain diseases in specific regions. A skilled workforce is crucial to addressing these challenges. Unfortunately, many countries in Africa often lack the required resources, and aspiring scientists frequently seek educational and career opportunities abroad, leading to a substantial loss of talent and expertise from the continent. This talent migration, referred to as "brain drain," exacerbates the existing training gaps and hampers the sustainability of research within Africa.


Assuntos
Doenças Transmissíveis , Genômica , Carga Global da Doença , Humanos , África/epidemiologia , Recursos Humanos , Doenças Transmissíveis/economia , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/mortalidade , Prevalência , Incidência , 60480 , Genômica/economia , Genômica/tendências
4.
Nature ; 626(7998): 377-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109938

RESUMO

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.


Assuntos
Archaea , Bactérias , Ecossistema , Evolução Molecular , Genes Arqueais , Genes Bacterianos , Genômica , Conhecimento , Peptídeos Antimicrobianos/genética , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biomarcadores , Movimento Celular/genética , Neoplasias Colorretais/genética , Genômica/métodos , Genômica/tendências , Metagenômica/tendências , Família Multigênica , Filogenia , Reprodutibilidade dos Testes
5.
Nature ; 623(7986): 274-282, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938705

RESUMO

Neuroscience research has entered a phase of key discoveries in the realm of neurogenomics owing to strong financial and intellectual support for resource building and tool development. The previous challenge of tissue heterogeneity has been met with the application of techniques that can profile individual cells at scale. Moreover, the ability to perturb genes, gene regulatory elements and neuronal activity in a cell-type-specific manner has been integrated with gene expression studies to uncover the functional underpinnings of the genome at a systems level. Although these insights have necessarily been grounded in model systems, we now have the opportunity to apply these approaches in humans and in human tissue, thanks to advances in human genetics, brain imaging and tissue collection. We acknowledge that there will probably always be limits to the extent to which we can apply the genomic tools developed in model systems to human neuroscience; however, as we describe in this Perspective, the neuroscience field is now primed with an optimal foundation for tackling this ambitious challenge. The application of systems-level network analyses to these datasets will facilitate a deeper appreciation of human neurogenomics that cannot otherwise be achieved from directly observable phenomena.


Assuntos
Genômica , Neurociências , Biologia de Sistemas , Humanos , Encéfalo/metabolismo , Genômica/tendências , Modelos Biológicos , Neurociências/métodos , Neurociências/tendências , Biologia de Sistemas/tendências
11.
BMC Genomics ; 24(1): 117, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927511

RESUMO

BACKGROUND: Generating the most contiguous, accurate genome assemblies given available sequencing technologies is a long-standing challenge in genome science. With the rise of long-read sequencing, assembly challenges have shifted from merely increasing contiguity to correctly assembling complex, repetitive regions of interest, ideally in a phased manner. At present, researchers largely choose between two types of long read data: longer, but less accurate sequences, or highly accurate, but shorter reads (i.e., >Q20 or 99% accurate). To better understand how these types of long-read data as well as scale of data (i.e., mean length and sequencing depth) influence genome assembly outcomes, we compared genome assemblies for a caddisfly, Hesperophylax magnus, generated with longer, but less accurate, Oxford Nanopore (ONT) R9.4.1 and highly accurate PacBio HiFi (HiFi) data. Next, we expanded this comparison to consider the influence of highly accurate long-read sequence data on genome assemblies across 6750 plant and animal genomes. For this broader comparison, we used HiFi data as a surrogate for highly accurate long-reads broadly as we could identify when they were used from GenBank metadata. RESULTS: HiFi reads outperformed ONT reads in all assembly metrics tested for the caddisfly data set and allowed for accurate assembly of the repetitive ~ 20 Kb H-fibroin gene. Across plants and animals, genome assemblies that incorporated HiFi reads were also more contiguous. For plants, the average HiFi assembly was 501% more contiguous (mean contig N50 = 20.5 Mb) than those generated with any other long-read data (mean contig N50 = 4.1 Mb). For animals, HiFi assemblies were 226% more contiguous (mean contig N50 = 20.9 Mb) versus other long-read assemblies (mean contig N50 = 9.3 Mb). In plants, we also found limited evidence that HiFi may offer a unique solution for overcoming genomic complexity that scales with assembly size. CONCLUSIONS: Highly accurate long-reads generated with HiFi or analogous technologies represent a key tool for maximizing genome assembly quality for a wide swath of plants and animals. This finding is particularly important when resources only allow for one type of sequencing data to be generated. Ultimately, to realize the promise of biodiversity genomics, we call for greater uptake of highly accurate long-reads in future studies.


Assuntos
Biodiversidade , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Genômica/métodos , Genômica/normas , Genômica/tendências , Insetos/classificação , Insetos/genética , Fibroínas/genética , Mapeamento de Sequências Contíguas , Genoma de Inseto/genética , Animais , Bases de Dados de Ácidos Nucleicos , Reprodutibilidade dos Testes , Metanálise como Assunto , Conjuntos de Dados como Assunto , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Plantas/genética , Genoma de Planta/genética
13.
Fertil Steril ; 117(2): 258-267, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35125173

RESUMO

Over the past 40 years, since the publication of the original WHO Laboratory Manual for the Examination and Processing of Human Semen, the laboratory methods used to evaluate semen markedly changed and benefited from improved precision and accuracy, as well as the development of new tests and improved, standardized methodologies. Herein, we present the impact of the changes put forth in the sixth edition together with our views of evolving technologies that may change the methods used for the routine semen analysis, up-and-coming areas for the development of new procedures, and diagnostic approaches that will help to extend the often-descriptive interpretations of several commonly performed semen tests that promise to provide etiologies for the abnormal semen parameters observed. As we look toward the publication of the seventh edition of the manual in approximately 10 years, we describe potential advances that could markedly impact the field of andrology in the future.


Assuntos
Andrologia/tendências , Infertilidade Masculina , Saúde do Homem/tendências , Saúde Reprodutiva/tendências , Análise do Sêmen/tendências , Saúde Sexual/tendências , Difusão de Inovações , Fertilidade , Previsões , Testes Genéticos/tendências , Genômica/tendências , Humanos , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Infertilidade Masculina/fisiopatologia , Infertilidade Masculina/terapia , Masculino , Reprodução , Comportamento Sexual
15.
Mol Cell ; 82(2): 241-247, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063094

RESUMO

Quantitative optical microscopy-an emerging, transformative approach to single-cell biology-has seen dramatic methodological advancements over the past few years. However, its impact has been hampered by challenges in the areas of data generation, management, and analysis. Here we outline these technical and cultural challenges and provide our perspective on the trajectory of this field, ushering in a new era of quantitative, data-driven microscopy. We also contrast it to the three decades of enormous advances in the field of genomics that have significantly enhanced the reproducibility and wider adoption of a plethora of genomic approaches.


Assuntos
Genômica/tendências , Microscopia/tendências , Imagem Óptica/tendências , Análise de Célula Única/tendências , Animais , Difusão de Inovações , Genômica/história , Ensaios de Triagem em Larga Escala/tendências , História do Século XX , História do Século XXI , Humanos , Microscopia/história , Imagem Óptica/história , Reprodutibilidade dos Testes , Projetos de Pesquisa/tendências , Análise de Célula Única/história
16.
Mol Cell ; 82(2): 304-314, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063098

RESUMO

Owing to their unique abilities to manipulate, label, and image individual molecules in vitro and in cellulo, single-molecule techniques provide previously unattainable access to elementary biological processes. In imaging, single-molecule fluorescence resonance energy transfer (smFRET) and protein-induced fluorescence enhancement in vitro can report on conformational changes and molecular interactions, single-molecule pull-down (SiMPull) can capture and analyze the composition and function of native protein complexes, and single-molecule tracking (SMT) in live cells reveals cellular structures and dynamics. In labeling, the abilities to specifically label genomic loci, mRNA, and nascent polypeptides in cells have uncovered chromosome organization and dynamics, transcription and translation dynamics, and gene expression regulation. In manipulation, optical tweezers, integration of single-molecule fluorescence with force measurements, and single-molecule force probes in live cells have transformed our mechanistic understanding of diverse biological processes, ranging from protein folding, nucleic acids-protein interactions to cell surface receptor function.


Assuntos
Genômica/tendências , Imagem Molecular/tendências , Imagem Óptica/tendências , Imagem Individual de Molécula/tendências , Animais , Difusão de Inovações , Transferência Ressonante de Energia de Fluorescência/tendências , Humanos , Microscopia de Fluorescência/tendências , Proteômica/tendências
17.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042803

RESUMO

Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future.


Assuntos
Sequência de Bases/genética , Genômica/tendências , Viridiplantae/genética , Biodiversidade , Evolução Biológica , Elementos de DNA Transponíveis/genética , Ecologia , Ecossistema , Embriófitas/genética , Evolução Molecular , Genoma , Genoma de Planta/genética , Genômica/métodos , Disseminação de Informação/métodos , Armazenamento e Recuperação da Informação/métodos , Filogenia , Plantas/genética
18.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042807

RESUMO

Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of ∼2,000,000 eukaryotic species (<1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.


Assuntos
Biodiversidade , Evolução Biológica , Genômica/métodos , Animais , Evolução Molecular , Variação Genética/genética , Genoma/genética , Genômica/tendências , Humanos , Filogenia
19.
Funct Integr Genomics ; 22(1): 1-2, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35038070
20.
Nat Rev Genet ; 23(3): 182-194, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34764456

RESUMO

Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.


Assuntos
Sequência Conservada/fisiologia , Genoma/genética , Animais , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos , Feminino , Genômica/métodos , Genômica/tendências , História do Século XXI , Humanos , Mamíferos/genética , Camundongos , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...